In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry.
نویسندگان
چکیده
We present a quantitative study of the nuclear morphometry of epithelial cells in an animal model of esophageal carcinogenesis. Changes in the size and texture of cell nuclei as a result of neoplastic transformation and chemopreventive action are observed in situ using a new optical technique, angle-resolved low-coherence interferometry (a/LCI). The capabilities of a/LCI are demonstrated via quantitative in situ measurements of the nuclear morphometry of basal epithelial cells, approximately 50-100 microm beneath the tissue surface without the need for exogenous contrast agents or tissue fixation. The measurements quantify changes in nuclear size, characterized by average diameter, and nuclear texture, characterized by fractal dimension of the subcellular structures. Using this technique, we observed changes in the morphometry of rat esophageal epithelial cells in response to treatment with the carcinogen N-nitrosomethylbenzylamine. In addition, morphometric changes were observed in the esophagi of rats treated with N-nitrosomethylbenzylamine and two chemopreventive agents, difluoromethylornithine and perillyl alcohol. These agents induced either apoptosis in the basal epithelium (difluoromethylornithine) or both apoptosis and vacuolation of basal epithelial cells (perillyl alcohol). Vacuolation was associated with cellular toxicity. The light-scattering measurements were compared with histological images of the same tissues. The potential of a/LCI as a noninvasive means to investigate the development of epithelial neoplasia and for tracking the efficacy of chemopreventive agents appears high. This technique also may provide a new screening tool for intraepithelial neoplasia.
منابع مشابه
Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry.
Angle-resolved low-coherence interferometry (a/LCI) is used to obtain quantitative, depth-resolved nuclear morphology measurements. We compare the average diameter and texture of cell nuclei in rat esophagus epithelial tissue to grading criteria established in a previous a/LCI study to prospectively grade neoplastic progression. We exploit the depth resolution of a/LCI to exclusively examine th...
متن کاملIn situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry.
Optical spectroscopy was used to evaluate the transformation of nuclear morphology associated with intraepithelial neoplasia in an animal model of carcinogenesis. In this pilot study, we have assessed the capability of angle-resolved low-coherence interferometry (a/LCI) to monitor in situ the neoplastic progression of hamster trachea epithelial tissue. By using the depth resolution made possibl...
متن کاملDesign and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology.
We present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is ena...
متن کاملDetection of intestinal dysplasia using angle-resolved low coherence interferometry.
Angle-resolved low coherence interferometry (a/LCI) is an optical biopsy technique that allows for depth-resolved, label-free measurement of the average size and optical density of cell nuclei in epithelial tissue to assess the tissue health. a/LCI has previously been used clinically to identify the presence of dysplasia in Barrett's Esophagus patients undergoing routine surveillance. We presen...
متن کاملExperimental calibration of a new angle-resolved low coherence interferometry system
We describe results of calibration experiments using a new angle-resolved low coherence interferometry system. Light scattered from a polystyrene microsphere sample are compared with Mie Theory predictions to determine the size of the particles. © 2003 Optical Society of America OCIS codes: Low coherence interferometry, light scattering spectroscopy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 63 13 شماره
صفحات -
تاریخ انتشار 2003